

British Geological Survey

Gateway to the Earth

Detecting the Earth's magnetic field and the aurora with a Rpi magnetometer

Dr. Ciarán Beggan ciar@bgs.ac.uk

Raspberry Pi Jam: Codebase Edinburgh 30-Apr-2016

© NERC All rights reserved

Aurora over Greenock in October 2015

Doug Collinson: Northern Lights Over Cloch Lighthouse [07-Oct-2015] https://www.flickr.com/photos/60122552@N08/

Where do the aurora come from?

Core field

- Most of the field is from the Earth's liquid iron core
- Generated > 3500 km away
- Weaker than your average fridge magnet

- Fields due to currents in the tenuous upper atmosphere:
- ionosphere (from about 100 km altitude)
- magnetosphere (>2 Earth radii)

Where do aurora come from?

Some magnetic field words

Some magnetic field words

Measuring the Earth's magnetic field in the past

C

Measuring the Earth's magnetic field present day

Scientific Magnetometer

- Absolute measurements
- Long-term magnetic cleanliness of site
 - Platform stability important
 - Temperature control/correction important
- Good for main magnetic field
- Cost: £15,000+

Raspberry Pi magnetometer

- Relative not absolute accuracy
- Not temperature controlled
- Good for external magnetic fields
- Cost: £150
 - ~100 times less accurate but more than good enough!

Building a magnetometer?

AB Electronics 17-bit digitiser

Stefan Mayer FLC-100 fluxgate magnetometer

Adafruit TM36 thermometer

Construction

School Magnetometers

CABLE / CONNECTOR DIAGRAMS

Tim Taylor (photos Ciaran Beggan)

9 cores required in cable

Cable Colours:

10 core cable (shielded) to be used.

Colour	Rd	Or	Ye	Gr	Bu	Pu	Bl	Br	Gy	Wh
Use	+5	FG1+	FG2+	FG3+	FG1-	FG2-	0V	FG3-	The	xx
Pin #	1	3	4	5	7	8	2	9	6	

On Test in Edinburgh

On remote test

© NERC All rights reserved

Complicated Graph!

28-Oct

29-Oct

30-Oct

31-Oct Date [2015]

More info: geomag.bgs.ac.uk

All the details for build are here:

ftp://ftp.nerc-murchison.ac.uk/geomag/ciaran/Rpi_Magnetometer_build.zip

Next steps

- Real-time data delivery to AuroraWatch UK in Lancaster
- Deploy to a 10 schools around the UK
- Wait for some big aurora

 Also working on an Rpi AuroraCam ...

• Come see the demonstration after lunch!

© NERC All rights reserved

© NERC All rights reserved

BGS Magnetogram

National Geomagnetic Service, BGS, Edinburgh

Main Field map: Total Field strength (nT)

Total intensity (F) at 2015.0 from the World Magnetic Model (WMM2015). Contour interval is 1000 nT, white star is location of a magnetic pole and projection is Mercator. This is an example of an isodynamic chart. Credit: British Geological Survey (Natural Environment Research Council).

Main field total intensity change in 2015 (nT/yr)

Change of the Main Field: Poles Apart

- Geomagnetic Pole
 - global best fit dipole
- Magnetic 'Dip' Pole

180°

- where inclination is 90°
- actually a diffuse region

Declination 2015

Applications?

09:41

 \Box

Q New York, NY

1 3 -

315° NW

37°19'55" N, 122°1'46" W

Directional drilling for hydrocarbons

- Avoid well collisions
- Aim for smaller targets

Orientation of maps on a smart phone using digital compass and magnetic declination model

> 'Augmented reality' e.g. Google Sky

What is the risk from Geomagnetically Induced Currents?

Secondary induced currents flow into grounded infrastructure

