
Basic Shell Programming

W. H. Bell

W.Bell@cern.ch

c©2010

Abstract

A basic overview of the BASH scripting language is

given. The language is introduced using examples

covering a few aspects at a time. Reference tables are

provided for commonly used BASH functionality.

BASH shell programming introduction

W. H. Bell 2010

Introduction to BASH

“Bash is an sh-compatible command language interpreter that

executes commands read from the standard input or from a file.

Bash also incorporates useful features from the Korn and C shells

(ksh and csh).”

• Compound Commands

– Loops: for, while, until,

– Conditional Statements: select, case, if

• File Operations

– Conditional Expressions

– Reading and Writing to Files

• Expansion and Its Uses

• Command line arguments

• String Operations

– Conditional Expressions

– Uses of Parameter Expansion

– Other Commands

• Functions

• External Commands

Typing man bash gives a lot of extra information.

BASH shell programming introduction 1

W. H. Bell 2010

Starting a Shell

• Each user has a default shell: defined in passwd file.

]$ echo $SHELL

/bin/bash

• Can start another shell from the default shell either by typing

the name of the shell:

]$ bash

or by creating a file with the PATH to the shell at the top of

the file, eg:

]$ vi example_01.bash

#!/bin/bash

~

BASH shell programming introduction 2

W. H. Bell 2010

A Basic Shell Program

• First create a file containing the script.

#!/bin/bash

echo "In the beginning..."

• The file does not need to have a specific file extension. (For

the examples given in this course the BASH scripts have a suffix

of .sh)

• Then make the file executable

]$ chmod u+x ex1.sh

• And finally run the script.

]$./ex1.sh

In the beginning...

BASH shell programming introduction 3

W. H. Bell 2010

White Spaces and New Lines

• Spaces and new lines are very important in shell programming.

• In many languages white spaces are ignored i.e. the compiler

or interpreter skips over them.

• This is not so in basic shell programming. Try taking some

of the white spaces out of the following examples and see the

result.

BASH shell programming introduction 4

W. H. Bell 2010

Compound Commands: Loops: for

#!/bin/bash

word="a b c"

i=0

Read each character from $word and and assign

it to $name

for name in $word; do

Use ’let’ to increment i.

let i++

Print the value of $name

echo $name

done

echo "Looped $i times."

example 02.sh: A program to demonstrate a type 1 for loop.

BASH shell programming introduction 5

W. H. Bell 2010

Compound Commands: Loops: for

#!/bin/bash

Loop from 0 to 9.

for((i=0; i<10; i++)) ; do

Append the string form of i to the

end of the string j

j=ji

done

echo $j

example 03.sh: A program to demonstrate a type 2 for loop.

BASH shell programming introduction 6

W. H. Bell 2010

Compound Commands: Loops: while, until

#!/bin/bash

nloops=3

i=0

echo "while loop"

while [[$i<$nloops]]; do

echo $i

let i++

done

echo

echo "until loop"

i=0

until [[$i>$nloops]]; do

echo $i

let i++

done

example 04.sh: A program to demonstrate while and until

loops.

BASH shell programming introduction 7

W. H. Bell 2010

Compound Commands:

Conditional Statements: if

#!/bin/bash

for ((i=0;i<3;i++)) do

if [[$i == 1]]; then

echo "Turnip"

elif [[$i == 2]]; then

echo "Potato"

else

echo "Carrot"

fi

done

example 05.sh: A program to demonstrate if, elif, else

conditional statements.

BASH shell programming introduction 8

W. H. Bell 2010

File Operations: Conditional Expressions

#!/bin/bash

files="test test_dir test_link"

for file in $files; do

if [[-a $file]]; then

echo "File $file Exists"

fi

if [[-f $file]]; then

echo "File $file is a regular file"

fi

if [[-d $file]]; then

echo "File $file is a directory"

fi

if [[-h $file]]; then

echo "File $file is a symbolic link"

fi

done

example 06.sh: A program to that uses conditional expressions

to test for the presence of a file.

BASH shell programming introduction 9

W. H. Bell 2010

File Operations: Conditional Expressions

• Before running example 6.

]$ touch test; mkdir test_dir

]$ ln -s test test_link

Usage Result

-a file True if file exists

-b file True if file exists and is a block special file

-c file True if file exists and is a character special file

-d file True if file exists and is a directory.

-e file True if file exists

-f file True if file exists and is a regular file

-g file True if file exists and is set-group-id

-h file True if file exists and is a symbolic link

-k file True if file exists and its “sticky” bit is set

-p file True if file exists and is a named pipe (FIFO)

-r file True if file exists and is readable

-s file True if file exists and has a size greater than zero

-u file True if file exists and its set-user-id bit is set

-w file True if file exists and is writable

-x file True if file exists and is executable

-O file True if file exists and is owned by the effective user id

-G file True if file exists and is owned by the effective group id

-L file True if file exists and is a symbolic link

-S file True if file exists and is a socket

-N file True if file exists and has been modified since it was last read

file1 -nt file2 True if file1 is newer than file2

file1 -ot file2 True if file1 is older than file2

BASH shell programming introduction 10

W. H. Bell 2010

File Operations: Reading and Writing Files

#!/bin/bash

words="electron muon tau"

outputfile="test.out"

rm -f $outputfile

for name in $words; do

echo $name >> $outputfile

done

echo "cat $outputfile:"

cat $outputfile

echo

echo "Reading the words back in."

for name in $(<$outputfile); do

str="strname, "

done

echo $str

example 07.sh: A program demonstrate file i/o using output

redirection.

BASH shell programming introduction 11

W. H. Bell 2010

Expansion and Its Uses

#!/bin/bash

echo "Brace expansion - 1{2,3,4}5:"

echo 1{2,3,4}5

echo "Tilde Expansion HOME - ~:"

echo ~

echo "Tilde Expansion PWD - ~+:"

echo ~+

echo "Tilde Expansion wbell’s HOME:"

echo ~wbell/

example 08.sh: A program to demonstrate brace and tilde

expansion.

BASH shell programming introduction 12

W. H. Bell 2010

Expansion and Its Uses

#!/bin/bash

i=1

j=4

i=$((++i*j))

echo $i

example 09.sh: A program to demonstrate arithmetic expansion

• Provides functionality of let i.e. +, -, *, /, **

• Anything more complicated i.e. sine, sqrt etc: use bc or perl

BASH shell programming introduction 13

W. H. Bell 2010

Command Line Arguments

#!/bin/bash

echo "The number of args following the command = $#";

for arg in $* ; do

str="$str $arg"

done

echo "0str"

example 10.sh: A simple program to illustrating how command

line arguments can be read inside a shell program.

• Commands can be accessed directly by using $n where n is

the number of the command. E.g.

echo "The first argument is $1"

• Be careful to check the value is defined before using it.

BASH shell programming introduction 14

W. H. Bell 2010

String Operations: Conditional Expressions

#!/bin/bash

if [[-n $CHECK_ME]]; then

echo "CHECK_ME = $CHECK_ME"

else

echo "CHECK_ME is unset."

fi

example 11.sh: A program to demonstrate the use of conditional

string operators.

To test the example program try setting and unsetting the

CHECK ME environmental variable:

]$ export CHECK_ME=1

]$ unset CHECK_ME

Run the script before and after the environmental variable is set.

BASH shell programming introduction 15

W. H. Bell 2010

String Operations: Conditional Expressions

Usage Result

-z string True if the length of string is zero

-n string True if the length of string is non-zero

string1 == string2 True if the strings are equal

string1 != string2 True if the strings are not equal

A summary of the most useful conditional string operators.

BASH shell programming introduction 16

W. H. Bell 2010

String Operations: Parameter Expansion

#!/bin/bash

somestring=abcdef

echo "length = ${#somestring}"

i=2

echo "After $i characters ${somestring:$i}"

echo "Before $i characters ${somestring: -$i}"

j=2

echo "From char $i to of length $j ${somestring:$i:$j}"

example 12.sh: A script demonstrating substring selection via

Parameter Expansion.

BASH shell programming introduction 17

W. H. Bell 2010

String Operations: Parameter Expansion

#!/bin/bash

parameter="filename.dat"

word=".dat"

remainder=${parameter%$word}

echo "parameter=$parameter word=$word"

echo "remainder=$remainder"

example 13.sh: A script to remove part of a string using

Parameter Expansion.

• There are two types of this sort of parameter expansion.

– ${parameter#word} - Matching the beginning.

– ${parameter%word} - Matching the end.

• One # or % character for the shortest and two for the longest

matching case.

BASH shell programming introduction 18

W. H. Bell 2010

String Operations: Parameter Expansion

#!/bin/bash

parameter="filename.dat"

pattern=".dat"

string=".root"

new_filename=${parameter/$pattern/$string}

echo "parameter=$parameter pattern=$pattern"

echo "string=$string"

echo "new_filename=$new_filename"

example 14.sh: A script to demonstrate string substitution using

Parameter Expansion.

• The pattern is a pattern and not a word.

BASH shell programming introduction 19

W. H. Bell 2010

String Operations: Pattern Matching

#!/bin/bash

filename1="string"

filename2=" string "

match1=$filename1

match2=" string"

if [["$filename1" == "$match1"]]; then

echo "\"$match1\" matches \"$filename1\""

fi

if [["$filename2" == *"$match1"*]]; then

echo "\"$match1\" matches \"$filename2\""

fi

if [["$filename2" == "$match2"*]]; then

echo "\"$match2\" matches \"$filename2\""

fi

example 15.sh: A script demonstrating string pattern matching.

BASH shell programming introduction 20

W. H. Bell 2010

String Operations: Other Commands

A range of commands outside of the bash language can be

used to operate on strings.

• expr - Provides many string operations together with logic and

numeric functions. (Type info expr for more information.)

• sed - A stream editor used to perform operations on text.

• awk - Is the interpreter for The AWK Programming Language.

BASH shell programming introduction 21

W. H. Bell 2010

Functions

...

usage() {

echo ""

echo " Usage: $0 <directory>"

echo ""

exit 1

}

baddir() {

echo ""

echo " $1 can not be listed"

echo ""

}

...

An extract from example 16.sh: Two functions: one using a

global parameter, the other a local one.

BASH shell programming introduction 22

W. H. Bell 2010

Functions

...

Check at least one argument is given

if [[-z $1]]; then

usage

fi

...

else

baddir $dir

fi

...

An extract from example 16.sh: Calling the two functions

previously defined.

BASH shell programming introduction 23

W. H. Bell 2010

External Commands

...

files=$(ls $dir)

if [[$? == 0]]; then

...

An extract from example 16.sh: Demonstrating how to execute

external commands.

• $? Contains the return value from the command.

• The return statement is the last return value. Therefore do

not put an if statement between the command and the test

on $?

BASH shell programming introduction 24

