
C programming for physicists

W. H. Bell

c©2015

The C programming language is introduced through a set of worked ex-
amples. Linux tools for editing, compilation and linking programs are in-
troduced. Program design is discusses using flowcharts and Pseudocode.
Following the initial discussion of programming concepts, the majority of
the ANSI C syntax and built in commands are demonstrated. The course
concludes with a more complicated example of histogramming data from a
particle physics simulation.

1

Contents

1 Introduction 3
1.1 Motivation . 3
1.2 Programming . 4
1.3 Writing programs . 4
1.4 Programming with Linux . 5

2 Beginning to program with C 5
2.1 A first program . 5
2.2 Loops, conditional statements and functions 8
2.3 Pointers and arrays . 10
2.4 Command line . 13
2.5 File access . 14

2.5.1 Make . 18
2.6 Problem . 20

3 Data structures 21
3.1 Pointers and structs . 21
3.2 Binary I/O and unions . 22
3.3 Linking with FORTRAN77 . 26
3.4 Sine wave generator . 29
3.5 Problem . 34

4 Simple analyses 36
4.1 Histogramming data . 36
4.2 Problem . 41

2

1 INTRODUCTION

1 Introduction

Aims

1. Learn to solve problems by implementing computer programming structures and
designs suitable for use with other structured programming languages.

2. Cover core aspects of the C programming language.

3. Introduce programming with a Linux platform.

Syllabus

• Problem analysis strategies

– Flowcharts

– Pseudocode

• ANSI C

– Basic syntax and variable types

– Arrays, pointers and functions

– The C preprocessor

– Input/Output operations

– Structures and unions

• Introduction to programming on Linux

– The GNU C Compiler (gcc)

– Building executables with make

Material taught within the syllabus is intended to be supplemented by further reading.
The recommended reference material for this course is:

• “The C Programming Language”, Brian W. Kernighan and Dennis M. Ritchie,
Prentice-Hall, ISBN 0-13-110362-8

Further information on the GNU C compiler can be found at [1].

1.1 Motivation

Computers can be used for data acquisition, control, statistical analyses, building simu-
lations, numerical methods and other complex systems. While many software packages
have been written, it is often necessary to write or modify software to facilitate research
or to meet a goal within the workplace. Those who are able to program are therefore in

3

1.2 Programming 1 INTRODUCTION

an excellent position to attack complex problems.

1.2 Programming

There are a great many different computer programming languages. Thankfully, once
the general process of programming has been understood it does not take a great deal of
effort to apply similar strategies to other languages. The C programming language was
chosen for this course for several reasons: (i) the basic syntax is the same as C++ and
Java, (ii) its structured layout is similar to other common languages, (iii) the language is
simple and therefore easily understood, and (iv) C is used in many modern applications.

1.3 Writing programs

Before writing a program, it is important to know exactly what is required of a program.
A lot of time can be saved by thinking clearly about the internal structure of the software
before any source code is written. For example, a program that will be used for data
acquisition should be tailored to the specific hardware that will be used and provide
a user interface that contains functionality that the user expects. Failure to properly
understand the requirements of a program may result in wasted time and redesigning or
patching at a later stage. Some complicated languages such as C++ can be particularly
unforgiving in this respect.

Once the requirements of a program have been described, they need to be broken down
into a series of steps that can be converted into a computer programming language. In
this document,Pseudocode [8] and Flowcharts [7] are used to illustrate the design process.

Flowcharts are a high-level design tool that can also be used as a form of documen-
tation for other developers. Describing a program with a flowchart promotes a logical
thought process. However, documenting the fine details of a program using Flowcharts
would be prohibitively time consuming. Therefore, Flowcharts should be used either
to describe the overall logic of a distinct block of a program or particularly difficult to
understand section of a program.

Pseudocode is a quick way of describing a program, without writing the program in
a structured programming language. Pseudocode can be used to describe the internal
structure of functions or think through the inner workings of complex algorithms. There
is no fixed standard for Pseudocode. Therefore probably best to find a way of writ-
ing Pseudocode that feels comfortable and is consistent across a programming project.
Pseudocode is more useful as a design tool, rather than as a form of documentation.
However, Pseudocode may often be present as comments within a structured program.

In summary, the process of writing a program can be broken down into four steps:
(i) describing the requirements of a program, (ii) designing large functional blocks,
(iii) implementation of in a computer programming language, and (iv) documentation

4

1.4 Programming with Linux 2 BEGINNING TO PROGRAM WITH C

of the final program. Throughout this process it can be useful to have a log book or
electronic note pad to document the development stages.

1.4 Programming with Linux

The example programs that are discussed in this guide can be downloaded from:

http://www.whbell.net/resources/PhysCIntro/

Once the examples have been downloaded, they can be unpacked using the tar command:

]$ tar PhysCIntroSource-2015-06-22.tar.gz

where]$ refers to the Linux prompt. Each subdirectory contains source code and a
README.txt text file that describes how to build and run the associated example pro-
gram.

Developing structure programming languages, such as C, is easier when sections of
the source code are highlighted using different colours or fonts. This functionality is
present within several different editors such as emacs and is commonly referred to as
syntax highlighting or fontification. These editors often provide other features, such as
parenthesise checking and variable width tab stops.

2 Beginning to program with C

2.1 A first program

Programming languages are commonly introduced by writing a program to print a string
to the standard output. The standard output is normally displayed on the terminal
window or screen.

The design of the program is illustrated as a Flowchart in Figure 1 and described as
Pseudocode in Pseudocode 1. The Flowchart shows that the program starts, prints one
string and stops. The Pseudocode implementation is a little bit closer to the final C
program and includes the returning of a status code back to the operating system. The
C implementation of this program is given in Listing 1.

main()

Print a string

Return 0 to the operating system

Pseudocode 1: A pseudocode description of example 1

5

2.1 A first program 2 BEGINNING TO PROGRAM WITH C

Figure 1: A flowchart description of example 1

/∗ W. H. Be l l
∗∗ A very s imple C program to p r i n t one l i n e to the s tandard out
∗/

#include <s t d i o . h>

int main () {
p r i n t f (” In the beg inning . . . \ n”) ;
return 0 ;

}

Listing 1: The C implementation of example 1

The execution of every C program starts from a main() function. From this function
other functions can be called. The return type of main() is given by the int prefix.
Within the Linux/UNIX environment the operating system expects a program to return
an exit value. The value of the return statement from the main() function is collected
by the operating system and is available for a user to query after the program has run.
Following the execution of the program, the return value can be queried by typing

]$ echo $?

where]$ is the Linux prompt.

The contents of the main() function are delimited by the brackets { }, which rep-
resent a compound statement. Inside this compound statement there may be several
statements, each terminated by a ‘;’ character, together with other compound state-
ments. In this example, the main() function only contains two statements: one to print
a string to the standard output and one to return the exit value to the operating system.
The first of these statements prints a string to the screen by calling the standard output
function printf. This string is terminated by the end of line character \n. At the
top of the example, the pre-declaration of the printf function is included by including
the header file stdio.h. When this program is compiled, the compiler reads the pre-
declaration of printf from the header file and leaves an unresolved function call in the

6

2.1 A first program 2 BEGINNING TO PROGRAM WITH C

machine code to be resolved at link time. Above the #include statement is a comment.
Comments in C can be entered using /* */ to surround the comment area.1 When the
compiler compiles the code it ignores any text surrounded by /* */.

1The use of // comments is a non-ANSI feature and is therefore not included in this course.

7

2.2 Loops, conditional statements and functions2 BEGINNING TO PROGRAM WITH C

2.2 Loops, conditional statements and functions

Having written a first program, the next step is to introduce logic statements and other
functions. A program that introduces functions, conditional statements and loops is
given in the example 02 subdirectory. This example reads from the standard input and
performs several checks on integers and characters provided by the user. (The standard
input normally refers to something written to a terminal, either using the keyboard or by
input file redirection.) A Flowchart describing the main() function is given in Figure 2.
A Pseudocode implementation of this program is given in Pseudocode 2.

Figure 2: A flowchart representation of the main() function of example 2

Functions Similar to the first program, example 2 contains an int main() function.
Within this main() function three functions are called: numFingers, pickColour, and
quitTime. Each function is pre-declared before the main() function. Each pre-declaration
is a statement where the return type, and input parameter types must be given. The
void type simply means that no input parameter or return value is expected. All func-
tions must be either predeclared or declared before they are used. There are three

8

2.2 Loops, conditional statements and functions2 BEGINNING TO PROGRAM WITH C

main()

DO

Check the number of fingers.

Check the colour.

WHILE not time to quit

numFingers()

Print the question

Read a number from the stdin

Compare the number and return an answer

pickColour()

Print the question.

Read a character from the stdin.

Compare the character and return an answer.

quitTime()

Ask the user if it is time to quit (y/n)

Collect a character from the stdin

Compare this with y/Y and return 1 if its is time to quit

Pseudocode 2: A pseudocode representation of example 2

pre-declaration statements before the main() function.

void numFingers (void) ;
void pickColour (void) ;
bool quitTime (void) ;

The implementation of these functions is given after the main() function. Following the
same syntax as the main() function, the implementation of each of these three functions
has a return type, a series of input types, and a compound statement enclosing the
function contents. These three functions do not have any input parameters. If input
parameters are defined in the function definition, then their types must be given in the
pre-declaration and their types and names must be given in the implementation. If a
function has been pre-declared, but has not been implemented then the program will
fail to link.

In this example, the function pre-declarations are given before the main() function and
the implementation present afterwards. However, the example would compile correctly
if the pre-declaration was removed and the implementation of the functions was moved
to be before the main() function. While this would work within this simple example,
it is not possible to use implementations without pre-declarations when functions are
dependent on each other. As programs become more complicated, the pre-declarations
are moved into header files and the implementations are moved into associated libraries.

9

2.3 Pointers and arrays 2 BEGINNING TO PROGRAM WITH C

Header files are introduced in example 5.

Conditional statements Common ways of writing conditional statements involve ei-
ther if, if else, else or switch statements. There are other ways of construct-
ing conditional statements, but these are not covered in this course. Starting with
if, if else, else statements, examples of their syntax are given within the numFingers
and quitTime functions of example 2. Each if statement is evaluated such that when
the contents of the logic associated with an if statement inside the () brackets is true,
then the code within the following compound statement is executed.if, if else, else
statements operate sequentially, such that each piece of logic is tested in turn. If all of
the logic tests fail, then the statement following else is executed.

In some cases where simple sorting is needed a switch statement is a better choice
than a long if, if else... else statement. An example switch statement is given in the
pickColour function of example 2. While faster than an if, if else, else statement in
some cases, a switch statement is limited to simple cases and therefore the logic allowed
can be somewhat restrictive.

Loops Several types of loops are available to C programmers. There are while,
do while and for loops. Each of these loops continue to loop while a condition is
true. All of the logic available within an if conditional statement is also available
within these conditional tests. Instances of these loop types can be found within some of
the examples within this course. For example, example 2 contains a do while loop in its
main() function. This loop continues while the boolean evaluated within the while();

is true. This remains true until the function quitTime returns true. The while loop
tests on NOT quitTime return value.

2.3 Pointers and arrays

Many languages use pointers implicitly, such as implemented in FORTRAN and Java.
In the C programming language pointers are implemented explicitly. Therefore, if a
pointer has not been implemented, a normal variable will be used. The source code in
the example 03 subdirectory contains an example of pointer functionality and illustrates
the difference between a pointer and a normal variable. The design of example 3 is given
as a Flowchart in Figure 3 and as Pseudocode in Pseudocode 3.

Pointers are used to point to a memory address. Once initialised, a pointer can be
used to access a memory address or the value stored in the memory address. In example
3, there are two distinct parts to the program: (i) the call to the function fun and (ii)
the iteration over the array v[].

Functions and pointers The function fun is declared as

10

2.3 Pointers and arrays 2 BEGINNING TO PROGRAM WITH C

Figure 3: A flowchart illustration of the main() function of example 3

void fun (int , int ∗) ;

with input parameter types int and int *, where the second input parameter is a
pointer. When the function is called the memory address of p (&p) is assigned to the
pointer declared in fun. The difference between the behaviour of a pointer and a normal
local variable can be seen by running the program. After the function fun is called, the
variable np contains the same value that it contained before the function call. However,
the value of the variable p is modified when the function fun is called. Both np and p

are initialised in the main() function with the same value:

int np = 1 , p = 1 ;

At the point of initialisation an int sized block of memory is allocated to np and p. Then
the function fun is called with the value of np and the address of p. Within the function
fun, a new block of memory is allocated for the local variable np that is distinct from the
variable contained in the main() function. This memory is assigned the value from the
variable np that was declared in the main() function. In the function fun the value of

11

2.3 Pointers and arrays 2 BEGINNING TO PROGRAM WITH C

main()

Initialise two np and p integers with 1.

Initialise an array v with four elements.

Initialise a pointer pv with the address of the first element of the

array.

Print the values of the two integers np and p.

CALL fun() with the value np and the address &p.

Print the values of the two integers np and p.

Iterate over the array indices using the pointer pv.

Print the contents and address of each array element using pv.

fun(value and pointer)

Assign a number to the local variable.

Assign a number to the memory the pointer points to.

Pseudocode 3: A pseudocode implementation of example 3

the local variable np is modified and then lost as the function exits. Therefore, the value
of the variable np declared in the main() function is not modified. Unlike the variable
np, the value of the variable p declared within the main() is set by using a pointer. The
pointer is initialised with the memory address of the variable p contained within the
main() function. Then the memory address pointed to by the pointer *p is assigned the
value 2. Therefore when returning to the main() function the value contained in the
memory of p is still 2.

Arrays and pointers An array of type ’t’ is a series of memory blocks of size according
to the type. Each element of the array behaves as a separate variable of the given type
of the array. Array sizes are determined at compile time and therefore must be declared
somewhere within a program.2 In example 3 the array v is declared with four elements:

int v [] = {1 , 2 , 3 , 4} ;

This code is equivalent in function to:

int v [4] ;
for (int i =0; i <4; i++) v [i]= i ;

The size of the array within example 3 is determined by the number of elements within
the brackets {}.

2C does allow dynamic allocation of memory. This will be briefly demonstrated within the problem at

the end of the next section.

12

2.4 Command line 2 BEGINNING TO PROGRAM WITH C

Within example 3 the address of the first element is assigned to the pointer *pv. It is
important to note the point of declaration is the only place where the address is assigned
to a pointer in this fashion. Equivalent in function but slightly longer hand, this could
be written as:

int ∗pv ;
pv=&v [0] ;

Once the pointer has been assigned the memory address of the first element of the array
v[0] it can be used to access the elements as demonstrated in the example and illustrated
in figure 4. The action of incrementing the memory address of the the pointer

pv++;

causes it to point at the next element of the array.

Figure 4: An illustration of a pointer being used to iterate over array elements, where
the blue boxes signify the sequential sections of memory containing the values
stored in the array.

2.4 Command line

A C program can either receive command line input at execution time or by reading
input from a file or other data source. This example demonstrates how command line
arguments are passed into a C program when the program is executed. The design of
the program is given as a Flowchart in figure 5 and as Pseudocode in Pseudocode 4.

main(command line arguments)

Print the number of command line arguments

Loop over the command line inputs

Print each command line input

Pseudocode 4: Example 4 in pseudocode

When programming C on a Linux platform the main() function is normally imple-
mented in one of two ways:

int main (void)

13

2.5 File access 2 BEGINNING TO PROGRAM WITH C

Figure 5: A flowchart describing example 4

and

int main (int argc , char ∗argv [])

The second form allows command line input to be passed into the program. The operat-
ing system allocates the memory for *argv[] and initialises it with the input command
line arguments. The first element of the argv array contains the name of the executable.
The second element exists only if there is a argument following the name of the exe-
cutable, etc.. The parameter argc is initialised by the operating system with the number
of elements in the argv array. While it may seem odd to include the name of the ex-
ecutable in this list it can in fact be very useful. For example, if a program has been
written to do several tasks a symbolic link can be used to control which task it performs.
The logic of this can be tested out using example 4 by typing

]$ ln -s command_line.exe another_cmd.exe

]$./another_cmd.exe

A simple test on the value of argv[0] could then be used to do something else.

2.5 File access

Most programs will need to save or read data from disk or another input/output device.
Example 5 demonstrates how some simple data can be written to and read from an
ASCII file. The design of the main() is given in figure 6 and the complete program is
described in Pseudocode 5 and 6.

The program starts by checking the command line arguments. Then either file write

or file read is called. The functions file write and file read are pre-declared in the
header file file io.h and implemented in file io.c. When this code is compiled the

14

2.5 File access 2 BEGINNING TO PROGRAM WITH C

Figure 6: A flowchart describing the main() function of example 5

main(command line arguments)

Check the command line arguments

Make sure the file name is given

Check for the input flag and if not given set the default to

write.

IF the input flag is write, write the specified file.

ELSE IF the input flag is read, read the specified file.

ELSE report an error

Pseudocode 5: The main() function of example 5 in pseudocode

resultant machine code main.o contains undefined references to these functions. Then
at link time the machine code in file io.o and main.o is linked together to produce
the final executable. The practical process of building this executable is discussed in
section 2.5.1.

15

2.5 File access 2 BEGINNING TO PROGRAM WITH C

file_write(file name)

Open an output file.

IF the file was successfully opened

LOOP from 1 to 20

Print the value into the file.

IF the value is a multiple of 5 then print a newline.

ELSE print a space.

ELSE

Report an error.

file_read(file name)

Open an input file.

IF the file was successfully opened

Get a character until the end of file or until the buffer is full.

IF the character is not a space or a newline

Copy character into buffer.

ELSE IF the buffer contains something

Add a string terminating character.

Scan the contents into an integer.

Print the integer.

IF the integer is a multiple of 5 print a new line.

Reset the buffer.

ELSE

Report an error.

Pseudocode 6: The file write() and file read() functions of example 5 in pseu-
docode

16

2.5 File access 2 BEGINNING TO PROGRAM WITH C

The file io.h header file of example 5 contains three pieces of precompiler syntax
which surround the function predeclarations.

#ifndef FILE IO H
#define FILE IO H

void f i l e w r i t e (char ∗ f i l ename) ;
void f i l e r e a d (char ∗ f i l ename) ;

#endif

The purpose of these statements is to prevent the functions from being pre-declared
twice. While this does not happen within this example, double declaration which can
result in compiler errors is more of an issue with more complicated programs. It is
therefore a good idea to adopt the use of these precompiler statements at an early stage.

The functions file write and file read are implemented in file io.c. The file write

function calls fopen to open a file for writing

o u t p u t f i l e = fopen (f i l ename , ”w”) ;

This command returns a file pointer, which is a pointer to a struct typedef called
FILE. FILE contains information about the file which needs to be passed between the
different file I/O function calls. If the file cannot be opened for writing then null is
returned. This is logically equivalent to false and can therefore be used to check if the
file was opened correctly or not.

i f (o u t p u t f i l e) {

Once the file has been opened successfully data can be written in ASCII format by
calling the fprintf function. This function follows the same syntax as the printf

function with the exception of the file pointer as the first argument. When all the data
have been written to the file fclose is called to flush any remaining data in memory to
the file and to close the file. If fclose is not called, then when a program exits the file
will only be partially written to disk.

Once the output file is present on disk the function file read is called to read the
data back in and print them to the standard out. file read starts by opening a file for
reading

i n p u t f i l e = fopen (f i l ename , ” r ”) ;

Then single characters are read from the file until the End Of File (EOF) is reached or
the character buffer is full.

while ((c=f g e t c (i n p u t f i l e)) != EOF && j<9)

This is much more robust than just using fscanf to read data, which can easily result
in errors or crashes. If the character is not a space or a new line it is appended to

17

2.5 File access 2 BEGINNING TO PROGRAM WITH C

the character buffer. When a space or a new line is found then if the buffer contains
something it is scanned into an int by calling

s s c an f (s t r , ”%d” , &i) ;

where &i is the memory address of i and %d tells sscanf to treat the string as an integer.
After each int is read the data are printed back to the standard output in the same
form as they were saved to disk. Finally the file is closed.

2.5.1 Make

As the number of files involved or dependencies increases simply typing gcc would be-
come an lengthy and complicated task. Therefore from this example onwards Make[2]
is used to aid with compilation and linking of examples. The Makefile in example 5
has three targets which can be called from the command line: file io.exe, clean and
veryclean. The default target is the first one file io.exe. The default target it called
by typing

]$ make

The other targets are called by using the target name

]$ make veryclean

Above the default target are the definition and initialisation of three variables

CC=gcc
TARGET=f i l e i o
OBJECTS=main . o f i l e i o . o

The last one of these is a list. When the default target is called the dependencies
$(OBJECTS) are checked. If these files are not found then Make looks through the file for
a suitable target to make these files with. If there is a .c file with the correct name it
calls

%.o : %.c
@echo ”∗∗”
@echo ”∗∗ Compiling C Source ”
@echo ”∗∗”
$ (CC) −c $ (INCFLAGS) $<

This target compiles the .c file into a .o file. Then when all of the $(OBJECTS) are
present on disk Make executes the rest of the default target

$ (TARGET) . exe : $ (OBJECTS)
@echo ”∗∗”

18

2.5 File access 2 BEGINNING TO PROGRAM WITH C

@echo ”∗∗ Linking Executable ”
@echo ”∗∗”
$ (CC) $ (OBJECTS) −o $ (TARGET) . exe

which links the object files together to make the executable.

When any of the .c files referred to in the Makefile are present but are newer than the
.o file of the prefix name, make just rebuilds the files concerned and completes the link
step. When any of the $(OBJECTS) are newer than file io.exe, make just completes
the link step. This can be tested out by using touch

]$ make

]$ touch main.c

]$ make

]$ touch file_io.o

]$ make

More examples of make syntax are given in later examples.

19

2.6 Problem 2 BEGINNING TO PROGRAM WITH C

2.6 Problem

While working in research it can often be the case that a piece of equipment or software
produces its output in the wrong form for use as an input to another application. The
program problem/generator/generator.c writes random numbers into a sample.txt

file. Follow the instructions in generator/README file to produce a sample.txt. Then
write a program to convert sample.txt into a Comma Separated Values file (CSV)[6]
suitable for use as input to a spreadsheet. Run your program and read the resultant
output into a spreadsheet and plot the Value column as a histogram.

Start by drawing a simple Flowchart outline of the program. Then write the program
in Pseudocode. Finally write your program in C using code from each of this section’s
examples as necessary. Remember to add comments.

20

3 DATA STRUCTURES

3 Data structures

In this section more complex data structures struct and union will be discussed. An
example of how to interface to FORTRAN77 code will be given and the section finishes
with a complicated example including much of the syntax introduced so far.

3.1 Pointers and structs

The purpose of example 6 program is to demonstrate struct syntax and to show how
arrays and structs can be passed into a function. The program is described by Pseu-
docode 7.

main()

Instantiate two ints, an array of two ints and two structs.

Assign 1 to all data members

Print the values contained in the ints, the array and the structs

Call fun() to modify some of the values

Print the values contained in the ints, the array and the structs

fun(int np, int *p, int *arr, struct st dat, struct st *dat_ptr)

Change the value of the local variable np

Change the value in the memory p points to.

Change the values of the two elements of arr

Change the data members of the local struct dat

Change the data members of the struct dat_ptr points to.

Pseudocode 7: Example 6 in pseudocode

At the top of the file pointers2.c a struct is defined

struct s t {
int i ;
int array [2] ;

} ;

where st is the name of the struct. The data members of the struct are enclosed in
the {} brackets. This definition can be given in a header file instead of in a source file.
The definition defines the struct but does not create an instance of it. Then in the
main()two st structs are instantiated

struct s t dat , dat p ;

and their data members are initialised.

dat . i =1;
dat . array [0]=1 ;

21

3.2 Binary I/O and unions 3 DATA STRUCTURES

dat . array [1]=1 ;
dat p . i =1;
dat p . array [0]=1 ;
dat p . array [1]=1 ;

The syntax is <instantiation>.<data member>. Each instantiation of a struct is stored
in a separate block of memory. Unlike an array the data members can have different
lengths. The total memory used by a struct instantiation is determined by the sum
of the memory used for the data members. The order of the struct members in the
struct definition determines the order of their allocation in memory. The member types
can include other structs, unions, arrays and basic variables etc..

After the structs, basic variables and the array have all been initialised the function
fun() is called. This function is called with the value of np, the address of p, the array
arr, the value of dat and the address of dat p. Notice that the name of the array
arr is actually equivalent to passing an address of the first element &arr[0]. Therefore
the function declaration and implementation of fun includes this as int *. Inside the
function fun each of the variables is given a different value. The syntax of accessing
data members of a struct pointer is <pointer name> − ><data member>

dat ptr−>i =5;

or (*<pointer name>).<data member>

(∗ dat pt r) . i =5;

When the function fun is called the argument struct st dat caused a new instantiation
of the struct st to be made.

void fun (int np , int ∗p , int ∗ arr , struct s t dat , struct s t ∗ dat pt r)
{

The memory assigned to this instantiation is local to the function fun and will go out
of scope when the program leaves this function. When the function is called the data
members of dat are initialised with the values of the data members of dat from the
main(). The behaviour is therefore similar to the variable np.

Unlike dat, the address of dat p is passed into the function fun. The pointer
struct st *dat ptr is therefore initialised with this address. When the data members
of the object that *dat ptr points to are modified

dat ptr−>i =5; dat ptr−>array [0]=6 ; dat ptr−>array [1]=7 ;

then the change is still present when the execution returns to the main().

3.2 Binary I/O and unions

In example 7 the data concerning several fundamental particles are written in binary
form into an output file. Then the program reads these data back and prints out the 7th

22

3.2 Binary I/O and unions 3 DATA STRUCTURES

particle data record. The design of the program is given in Pseudocode 8.

main()

Print the size of one union entry.

Print the size of each union member.

Write 10 records of fundamental particles to a binary file.

Read the 7th record back from the binary file.

Print the values of the 7th record.

status write_records()

Create an array of 12 records.

Initialise the array of records with fundamental particle data.

Open a file for writing.

Write each record element out in binary form.

Close the file.

status find_record()

Open an input file.

Fast forward to the 7th record.

Read the 7th record.

Close the file.

Pseudocode 8: Example 7 in pseudocode

At the beginning of the main() a record dat is instantiated.

r ecord dat ;

record is a typedef declared in the header file data record.h.

typedef entry record [4] ;

This statement means that a record is a typedef of an array of entrys of length 4.
Therefore

r ecord dat ;

is equivalent to

entry dat [4] ;

The type entry is itself a typedef of a union

typedef union {
int id ;
double mass ;
char name [1 6] ;
int charge ;

} entry ;

23

3.2 Binary I/O and unions 3 DATA STRUCTURES

In the previous example structs were declared with the syntax:

struct s t {

} ;

This syntax is allowed with unions and the union syntax used in this example is allowed
with structs.

typedef struct {

} s t ;

The advantage of the typedef form used in this example is that the union prefix does
not have to be carried around the code. It is therefore much more common that the
typedef form of a struct or union definition is used.

A union contains a set of members which are listed within the {} brackets. The
members of a union share the same memory allocation. The size of the union is therefore
set by the largest member. This can easily be demonstrated by running example 7. The
syntax for accessing the members of a union is the same as the syntax used for accessing
the members of a struct.

In this example an array of the entry union is created with 4 elements, this is a
record. The record stores a particle’s id, mass, name, and charge. To make the code
more readable a set of #define statements are used instead of the indices.

#define RECORD ID 0
#define RECORDMASS 1
#define RECORDNAME 2
#define RECORDCHARGE 3

When the code compiles the precompiler replaces each definition with its value. Then
the compiler turns the result into machine code. It is a common convention that #define
statements use all upper case letters to avoid confusion with real variables. What follows
the #define NAME does not have to be a simple number, the precompiler just does a
find and replace.

The first use of the precompiler definitions is in write records. In this function an
array of records is instantiated

r ecord p a r t i c l e d a t a [1 2] ;

and each entry is filled by simple assignment.

p a r t i c l e d a t a [0] [RECORD ID] . id = 22 ;
p a r t i c l e d a t a [0] [RECORDMASS] . mass = 0 .E+00;
s t r cpy (p a r t i c l e d a t a [0] [RECORDNAME] . name , ”gamma”) ;
p a r t i c l e d a t a [0] [RECORDCHARGE] . charge = 0 ;

24

3.2 Binary I/O and unions 3 DATA STRUCTURES

This demonstrates that the array index contained in the typedef record statement
comes after the array index defined by defining the particle data array.

Following the initialisation of the particle data array the data are written to a
binary file. The binary file is opened in the same way as the ASCII file in example 5.

f i l e p t r = fopen (p a r t i c l e f i l e , ”w”) ;

This time however the error messages are handled by printing them to the standard
error. To print to the standard error the fprintf function is used with the standard
error file pointer stderr.

f p r i n t f (s tde r r , ” Error : unable to open \’%s \ ’ f o r wr i t i ng .\n” ,
p a r t i c l e f i l e) ;

The standard error is printed to the console or shell window in the same manner as the
standard output but is contained in a different stream. When running a program on
Linux the standard output an be redirected to a file.

]$./prog.exe > output

This does not redirect the standard error though, which can be left for the user to read.3

Once the file has been opened the particle data records are written to it in binary
form.

fw r i t e (&pa r t i c l e d a t a [i] [j] , 16 , 1 , f i l e p t r) ;

The arguments of fwrite are the address of one union instantiation, the size of the
union, the number of union instantiations to be written and the file pointer to which
the data should be written. Since the size of the union is set by the largest member
each data element is the same size. This means that the code to write out these data is
very simple and only requires two loops over the fwrite statement.

After the data have been written to disk find record is called to find and read the
7th record. find record opens the binary file in the same way as the ASCII file was
opened in example 5.

f i l e p t r = fopen (p a r t i c l e f i l e , ” r ”) ;

Then after checking the file was opened successfully it fast forwards to the correct posi-
tion in the file

i f (f s e e k (f i l e p t r , (long) (s izeof (∗ dat) ∗ o f f s e t) , 0) != 0)

where fseek returns a non-zero value if the seek fails. This then leaves the file-position
indicator set to point at the value given by the offset. The record is then read by calling
fread.
3It is possible to redirect both standard error and standard output to one file.

25

3.3 Linking with FORTRAN77 3 DATA STRUCTURES

f r ead (dat , s izeof (∗ dat) , 1 , f i l e p t r) ;

Finally in the main() these data are printed to the standard out

p r i n t f (”\ t Id \ t Mass \ t Name \ t Charge \n”) ;
p r i n t f (”\ t %d \ t %3.3 e \ t %−12s \ t %d \n” ,

dat [RECORD ID] . id ,
dat [RECORDMASS] . mass ,
dat [RECORDNAME] . name ,
dat [RECORDCHARGE] . charge) ;

Throughout example 7 possible errors are caught and result in a non-zero value being
returned to the operating system. When writing a program it is important to make sure
the implementation is able to prevent crashes by handling error conditions properly.
This means that the program should exit in a controlled manner and provide the user
with a description of the error, rather than a cryptic message or nasty crash.

3.3 Linking with FORTRAN77

Although many modern programs have been written in C it is sometimes very useful to
be able to link C code to another programming language. When the code to be linked to
is compiled into machine code this can be achieved by knowing how the two compilers
concerned work. For example, FORTRAN77 a programming language often used for
physics and engineering applications, can be compiled by gfortran into object files.
These object files can be browsed with nm.

]$ gfortran -c fortran.for

]$ nm -g fortran.o

00000251 T call_back_

00000000 T commons_

U do_lio

U e_wsle

00000062 C forcom_

U mult_a_

U s_wsle

C code is also compiled into object files, which can also be browsed with nm.

]$ gcc -c main.c

]$ nm -g main.o

U call_back_

U commons_

00000065 T fill_common

U forcom_

26

3.3 Linking with FORTRAN77 3 DATA STRUCTURES

00000000 T main

000000ed T mult_a_

U sprintf

All that is needed to join FORTRAN77 with C is for the undefined references in FOR-
TRAN77 or C to be present in the object files generated from the other language. In
this example call back , commons , forcom and mult a are linked between the two
languages. The other undefined symbols can be found in the system libraries. When
gfortran compiles the FORTRAN code it uses a lower case version of the name and
appends one underscore to the end of the name.4

Example 8 demonstrates all of the features of linking C and FORTRAN77 together.
The design of the program is given in Pseudocode 9.

main()

Fill the FORTRAN common block with numbers and a string.

Print the contents of the FORTRAN common block with FORTRAN code.

Multiply a number and print a string by calling the FORTRAN code.

fill_common()

Fill the int and float arrays of the common plot with

sequential numbers.

Fill the FORTRAN string with a C string.

mult_a_()

Multiply the input value by 10 and return it.

SUBROUTINE COMMONS

Print the contents of the common block.

FUNCTION CALL_BACK

Print the input string.

Call the C function to multiply the input value by 10.

Print the resulting value and return it.

Pseudocode 9: Example 8 in pseudocode

There are some important differences to point out between the two languages. Firstly
C strings are character arrays terminated by the ’\0’ character. This means that the
maximum length of a string is equal to the number of elements of the character array
minus one. In FORTRAN character arrays are also used to store strings but unlike C
’\0’ is not used. The maximum length of a string in FORTRAN is therefore set by the
number of elements in the character array. FORTRAN keeps track of the length of a

4This behaviour can be controlled by using compiler options.

27

3.3 Linking with FORTRAN77 3 DATA STRUCTURES

string by implicitly passing its length with the string. When FORTRAN is compiled with
gfortran these implicit variables become explicit in the machine code output. Therefore
when calling a FORTRAN function from C, the lengths of each of the strings must follow
each of the character arrays:

f loat c a l l b a c k (f loat ∗ ,char ∗ , int) ;

where the int is the implicit string length variable.

The allocation of memory to FORTRAN arrays is different to that of C. For example
when a two dimensional array is declared in FORTRAN

INTEGER INTARRAY(3 ,2)
REAL REALARRAY(2 ,3)

in C the array indices of the equivalent memory mapping are:

int i n t a r r ay [2] [3] ;
f loat r e a l a r r a y [3] [2] ;

The first index of a FORTRAN array is by default 1, but C always uses 0 as the first
index of an array. These differences are particularly important when dealing with common

blocks. In the FORTRAN include file FORTRAN.INC a common block is declared.

INTEGER INTARRAY(3 ,2)
REAL REALARRAY(2 ,3)
CHARACTER∗50 SOMESTRING
COMMON/FORCOM/INTARRAY,REALARRAY,SOMESTRING

This defines the common block and creates one global instance of the common block in
memory. In a similar fashion to a struct, the order of the member variables denotes
there order in memory, and the total size of the common block is just the sum of the
sizes of the members. Once a common block has been declared FORTRAN or C code
can access its data members. The FORTRAN common block can be included in several
different FORTRAN files, but only one instance of it will be created in memory. This
global memory can be accessed from C by creating a global un-resolved struct of the
correct name.

typedef struct {
int i n t a r r ay [2] [3] ;
f loat r e a l a r r a y [3] [2] ;
char somestr ing [5 0] ;

} forcom ;

extern forcom forcom ;

The extern command means that the compiler will look through the object files for
the memory definition of forcom and link to it, rather than allocate another block of
memory. Without the extern prefix the memory allocated in the C program would be

28

3.4 Sine wave generator 3 DATA STRUCTURES

different to that of the FORTRAN common block. The order, types and sizes of the C
struct must match the order, types and sizes of the FORTRAN common block.

In addition to the memory mapping and variable type name differences, FORTRAN
uses pointers implicitly in function calls. A function of the form

FUNCTION CALL BACK(A,NAME)
IMPLICIT NONE

REAL A, C, CALL BACK, MULTA
CHARACTER∗ (∗) NAME

is therefore equivalent to

f loat c a l l b a c k (f loat ∗ ,char ∗ , int) ;

The last variable in the C version of this function is the length of the string, which is
implicitly present in the FORTRAN code.

3.4 Sine wave generator

As programs become larger the initial design becomes more important. Therefore to
encourage thought about program structure the example programs given in this course
will become more and more complicated. In example 9 there are 9 C files containing a
total of 300 lines. When writing a program of this size it needs to be clear what the
design requirements and components are.

Design

Requirements A program to either generate sine wave spectra and save them to a
binary file or read the spectra from a binary file. The last spectrum either written to or
read from the file should be plotted with gnuplot [3].

Components

• main implement in main.c

Handles the users command line arguments and selects either write or read with
the selected number of events if this is given.

• gen data implement in gen data.c

Generates the sine wave from a flat random number generator

• gen value implement in gen data.c

A function to generate a random floating point number between two limits using

29

3.4 Sine wave generator 3 DATA STRUCTURES

a flat random number generator.

• write data implement in file io.c

A function to write a data sample to a binary file

• read data implement in file io.c

A function to read a data sample from a binary file

• sample define in gen data.h

A struct to contain sine wave samples.

• plot data implement in plot data.c

A function to plot a data sample with gnuplot

• gnuplot implement in gnuplot.c

A function to provide an interface with gnuplot by using a system call.

Discussion of the implementation

The implementation of example 9 is described in Pseudocode 10, 11, 12 and 13.

This program uses several concepts that were introduced with previous examples. The
discussion of this example therefore only covers additional points.

The program starts by checking if a binary file is to be written or read. It then checks
the number of events which should be either written or read. Following this the program
writes or reads sine wave data to or from the binary file and plots the last sine wave
sample with gnuplot. In example 9 the each sine wave sample is stored in an instantiation
of a struct typedef sample.

typedef struct {
f loat x [MAX PTS] ; /∗ The x va lue ∗/
f loat y [MAX PTS] ; /∗ The y va lue ∗/
int pts ; /∗ Number o f po in t s in the sample ∗/

} sample ;

In the main()an instance of sample is declared.

sample dat ;

Then dat is either filled with generated data

gen data(&dat) ;

30

3.4 Sine wave generator 3 DATA STRUCTURES

or with data read from a file.

read data (f i l e p t r , &dat) ;

While sizes of the data member arrays x and y are fixed the number of elements used
varies. Therefore the data member pts is use to keep track of the number of useful
elements in memory. When these data are written to file the record length of each sine
wave sample varies in accordance with the value of pts. The value of pts is therefore
written to the file for each sine wave sample. An illustration of the resultant file structure
is given in figure 7.

Figure 7: An illustration of the binary file structure used in example 9

The last sine wave sample that is either read from file or generated is plotted with gnu-
plot. The main()calls plot data, passing it a pointer to the last sample. plot data then
writes a temporary file for gnuplot to read. This file has to be of the form: “<number>
<number>”. Then after plot data has written the file the gnuplot command is assem-
bled.

s p r i n t f (gnuplot command , ” p l o t \’%s \ ’\n” , f i l ename) ;

(sprintf follows the same syntax as printf but starts with a pointer to a string buffer.)
The command assembled corresponds to what would be typed at the interactive gnuplot
command line to plot these data. This command is passed to the gnuplot function
to plot the data. The gnuplot function inserts another string in front of the gnuplot
command

s p r i n t f (syscommand , ” echo \”%s \” | gnuplot −p e r s i s t ” , gnucommand) ;

and uses a system call to execute the command in a Linux shell.

system (syscommand) ;

The affect of the “-persist” is that gnuplot continues to run after the C program has
exited.

31

3.4 Sine wave generator 3 DATA STRUCTURES

main(commmand line inputs)

Check the command line inputs

IF the file name and flag are not given report an error

IF the flag is -w check for the number of events

IF the number of events has not been given set it to 10 events.

ELSE read the number of events.

Open an output file.

Write the number of events into the file as a header.

Generate the required number of events needed.

Write each one to the output file.

Plot the last event with gnuplot.

close the output file.

ELSE IF the flag is -r open an input file.

Read the number of events, recorded at the start of the file.

IF the number of events has not been given use the number at the

top of the file.

ELSE check if the argument is a number and if it is set the

number of events to read to be the number given.

IF the number of events selected is greater than the number of

events in the file

Set the number of events selected to be the number of events

in the file.

Read the events from the file.

Plot the last event.

Close the input file.

ELSE return an error reporting the flag is invalid.

Pseudocode 10: Example 9 in pseudocode

32

3.4 Sine wave generator 3 DATA STRUCTURES

gen_value(limits)

Generate a random float between two limits using a flat random

distribution.

Return this value

gen_data(data sample pointer)

Set the limits for the random parameters: number of points, a, b, and c.

Generate values for: the number of points, a, b, and c.

Use the number of points to determin the step size, where the range

of x is 0 to 2PI.

Use the step size, and the values for a, b, and c to generate the

sine wave event.

Pseudocode 11: Example 9 in pseudocode

write_data(file pointer, data record)

Write the number of points

Loop over all points

Write the x value

Write the y value

read_data(file pointer, data record)

Read the number of points

Loop over all points

Read the x value

Read the y value

Pseudocode 12: Example 9 in pseudocode

plot_data(data record)

Open a temporary output file.

Loop over all points

Write "x y" as text to the file.

Create the gnuplot command.

Plot the data with gnuplot.

Remove the temporary output text file.

Pseudocode 13: Example 9 in pseudocode

33

3.5 Problem 3 DATA STRUCTURES

3.5 Problem

Computers can be used to monitor other hardware or themselves. In the problem 02

subdirectory there is a program that requests memory using the malloc function. Then
after some period of time, the program then frees the dynamically allocated memory
by calling the free function. Write a program to monitor the total memory used every
second for a given number of minutes. The program should finish by plotting the total
memory usage as a function of time. Once the pseudocode and implementation has been
finished run the monitoring program at the same time as the memory loading program:

]$./system_monitor.exe 2 &

]$../problem/resource_hog/resource_hog.exe

where 2 is the number of minutes the monitoring program should run.

Hints

The memory allocation status can be obtained by calling sysinfo

int s y s i n f o (struct s y s i n f o ∗ i n f o)

This function can be called by including

#include <sys / s y s i n f o . h>

This include file also includes a definition of the sysinfo struct:

struct s y s i n f o {
long uptime ; /∗ Seconds s ince boot ∗/
unsigned long l oads [3] ; /∗ 1 , 5 , and 15 minute load averages ∗/
unsigned long tota lram ; /∗ Tota l u sab l e main memory s i z e ∗/
unsigned long f reeram ; /∗ Ava i l a b l e memory s i z e ∗/
unsigned long sharedram ; /∗ Amount o f shared memory ∗/
unsigned long buf ferram ; /∗ Memory used by b u f f e r s ∗/
unsigned long tota l swap ; /∗ Tota l swap space s i z e ∗/
unsigned long f reeswap ; /∗ swap space s t i l l a v a i l a b l e ∗/
unsigned short procs ; /∗ Number o f current p roce s s e s ∗/
unsigned long t o t a l h i gh ; /∗ Tota l h igh memory s i z e ∗/
unsigned long f r e e h i gh ; /∗ Ava i l a b l e h igh memory s i z e ∗/
unsigned int mem unit ; /∗ Memory un i t s i z e in by t e s ∗/
char f [20−2∗ s izeof (long)−s izeof (int)] ; /∗ Padding f o r l i b c 5 ∗/

} ;

Use the sleep command used in problem/resource hog/main.c to sleep for one second
between measurements. This will prevent the monitoring program from using up a lot
of CPU, which would affect the results. More information can be found in the manual
page by typing

34

3.5 Problem 3 DATA STRUCTURES

]$ man -s 3 sleep

Use the time command used in problem/resource hog/main.c. More information can
be found in the in the manual page by typing

]$ man time.h

35

4 SIMPLE ANALYSES

4 Simple analyses

During previous sections much of the C programming language has been introduced.
This section is therefore dedicated to solving more complicated problems.

4.1 Histogramming data

When processing large volumes of data it is often very useful to accumulate data values
in histograms. Histograms provide an important tool for observing fluctuations in a
data sample. For example, a histogram could be used to find a mass peak above a flat
background.

Example 10 is a program to histogram the output of two random number generators.
Its design and implementation are discussed in the following sub-sections.

Design

Requirements A program to histogram random numbers generated according to uni-
form and Gaussian distributions. The program should provide these random numbers by
using the integer random number generator rand from stdlib.h. The histrogramming
code should provide visual output using gnuplot.

Components

• main implement in main.c: create two histograms and fill them with 10000 uniform
and Gaussian random numbers respectively. Display the results with gnuplot.

• Provide histogram functionality.

– hist create implement in histogram.c: a function to create a histogram

– hist book implement in histogram.c: a function to add a value to an exist-
ing histogram

– hist plot implement in histogram.c: a function to plot a histogram’s con-
tents using gnuplot.

– hist entry define in histogram.c: a struct to contain the information of
each histogram.

– gnuplot implement in gnuplot.c: A function to provide an interface with
gnuplot by using a system call.

• Provide random number functionality.

– set seed implement in random dist.c: a function to set the seed of the

36

4.1 Histogramming data 4 SIMPLE ANALYSES

random number generator.

– random dist flat implement in random dist.c: a function to return a float-
ing point random number between 0. and 1.

– random dist gaus implement in random dist.c: a function to return a float-
ing point random number following a Gaussian distribution with a given
sigma.

Discussion of the implementation

The implementation of example 9 is described in Pseudocode 14, 15, and 16.

main()

Create two histograms.

Loop for 10000

Generate a random number following a Gaussian distribution.

Histogram the Gaussian random number.

Generate a random number following a uniform distribution.

Histogram the uniform random number.

Plot both histograms using gnuplot

Pseudocode 14: Example 10 in pseudocode

The program starts by creating two histograms.

h i s t c r e a t e (”Gaus” ,20 , −3 .0 ,3 .0) ;
h i s t c r e a t e (”Flat ” , 2 0 , 0 . 0 , 1 . 0) ;

The hist create function assigns the histogram information to members of an element
of the h dat array. The variable num hist is used to keep track of which elements of
h dat array have been filled. Both h dat and num hist are globally available within
histogram.c.

stat ic int num hist = 0 ;
stat ic h i s t e n t r y h dat [MAX HIST] ;

The static prefix means that no function outside histogram.c is able to access these
variables. Without the static prefix the variables could be accessed by a function
implemented outside histogram.c provided an external instantiation was used. An
example of an external instantiation is given in example 8.

The advantage of instantiating h dat and num hist globally in histogram.c is that
they do not go out of scope. Therefore every time one of the histogram functions is
called h dat and num hist are still in memory.

The variable h dat is an array of typedef struct hist entry, which is defined in
histogram.c rather than in a header file. The reason for this is that hist entry is

37

4.1 Histogramming data 4 SIMPLE ANALYSES

hist_create(histogram name, number of bins, lower limit, upper limit)

Fill static memory with histogram information.

Calculate bin size and store it in static memory.

Initialise all bins to be 0.

RETURN this histogram’s index

hist_book(histogram index, value, weight)

IF the value is less than the lower limit increment the underflow

bin by the weight.

ELSE IF the value is greater or equal to the upper limit increment

the overflow bin by the weight.

ELSE find which bin the value is inside and increment its value by

the weight.

hist_plot(histogram index)

Create a temporary file for gnuplot

Open the temporary file

Save the data as "<value> <value>" to the file.

Assemble a gnuplot command to plot the histogram.

Call gnuplot.

Remove the temporary file.

Pseudocode 15: Example 10 in pseudocode

intended just for storing histogram information. When writing a large program it is
highly advisable to break it down into building blocks. In this program the histogram
functions and the associated data are one building block.

Once the histograms have been created a Gaussian random number is generated by
calling random dist gaus(). When this function is called it either generates two random
numbers and returns one, or uses the spare one stored from the last time it was called.
To store the spare random number random dist gaus() uses two static variables:

stat ic int r andom di s t gaus s ta tu s = 0 ;

and

stat ic double spare num ;

The variable random dist gaus status is defined outside the function random dist gaus()

as static. It is therefore private to the functions within random dist.c. The variable
spare num is defined as static within the function random dist gaus(). Unlike normal
local variables the variable spare num is defined once in memory and does not go out of
scope when the program leaves the random dist gaus() function. The value stored in
spare num at the end of random dist gaus() is therefore available when the function
is next called.

38

4.1 Histogramming data 4 SIMPLE ANALYSES

random_dist_flat()

Generate an integer random number

Use the limit of the integer to calculate a floating point number

between 0 and 1.

RETURN the floating point number.

random_dist_gaus(double sigma)

IF a spare random number is not present

Generate two random numbers within the unit circle.

Use a Box-Muller transformation to get two Gaussian random

numbers.

Save one of the random numbers in static memory and RETURN the

other.

ELSE

RETURN the spare random number.

Pseudocode 16: Example 10 in pseudocode

There are some program operations that can cause a serious error. For example, if
an array index is outside of the arrays memory allocation or if a function is passed a
variable outside of the limits allowed. Wherever program structures or function calls are
used that might cause such an error they should be protected. In example 10 there is a
simple catch to prevent an array index from going out of bounds.

i f (i <0) {
f p r i n t f (s tde r r , ”CRITICAL ERROR: something has gone very wrong !\n”) ;
e x i t (1) ;

}
h dat [h index] . b ins [i] += weight ;

The program should not ever get inside this if statement. If it does there is a serious
bug in the code. The exit(1) function call causes the program to terminate and return
1 to the operating system. This is a rather extreme case and other error prevention code
may not need to cause the program to exit. For example, if a section of code is written
to calculate the hypotenuse of a right angled triangle, then the code should catch the
case where the sides have no length.

double a , b=0. , c =0. ;
double a sqd ; /∗ a squared ∗/
a sqd = pow(b , 2 . 0)+pow(c , 2 . 0) ; /∗ bˆ2 + cˆ2 ∗/
i f (a sqd<=0) { /∗ Prevent a p o s s i b l e s q r t e r ror ∗/

a = 0 ;
}
else {

a = sq r t (a sqd) ;
}

39

4.1 Histogramming data 4 SIMPLE ANALYSES

After the histograms have been filled hist plot is called to plot this histogram using
gnuplot. In example 9 the temporary file was written in the present working directory
with a fixed name. This could cause problems were the present working directory can
not be written to or when two instances of the program are running in the same directory
at the same time. To solve both of these issues it is common that temporary files are
written in the tmp directory with unique file names. Rather than write a piece of code to
produce unique file names the program calls mkstemp. This function is part of stdlib.h
and creates a unique file following the supplied template. The file is left open and a file
descriptor is returned. A file stream is then opened with this file descriptor.

tmp f i l e = fdopen (f i l e d e s c r i p t o r , ”w”) ;

Data are then written to the file and the file and file descriptor are closed with fclose.
File descriptors are low level I/O because they are closer to the underlying operating
system.

The function random dist gaus contains three mathematical functions: pow, sqrt,
and log. These functions are all defined in the header file math.h and require the
library libm.a to be linked in to the final executable. libm.a is a standard library
and is therefore already in the search path for the linker. (If the library was not in the
standard search path a -L<directory name> would have to be added to the link line.)
The libm.a library is included in the link step by simply adding -lm to the link line.

40

4.2 Problem 4 SIMPLE ANALYSES

4.2 Problem

The problem 03/generator directory contains a program that generates simulated B
meson pairs, using the PYTHIA[5] event generator. The program should be compiled
and run as specified in the README file to generate at least 5000 events.

Write a program to read the HEPEVT event records from the binary file
data/pptobbar hepevt.dat. Histogram the transverse momentum (pT) of the B mesons
and their proper lifetime τtrue as the length cτtrue. Calculate the mean value of cτtrue for
the data sample and compare this with the PDG[4] world averages given in table 1.

Meson cτ (µm)

B± 491.1
B0 458.7
Bs 439

Table 1: A table of the mean lifetimes of B mesons expressed as cτtrue, taken from the
PDG.

Start by writing down a Pseudocode implementation. Then implement a solution.
Remember to comment your code. Marks will be given for pseudocode and implemen-
tation.

Background information

The transverse momentum pT is defined as

pT =
√

p2x + p2y

where px and py are the x and y components of the momentum respectively.

The transverse displacement of the secondary vertex with respect to the primary vertex
can be calculated from

Lxy =
√

v2x + v2y

where vx and vy are the x and y components of the vertex position respectively.

The true lifetime τtrue is related to the displacement of the secondary vertex, as stated
in equation 1.

cτtrue = LB
xy

mB

pBT
, (1)

where mB is the mass of the B meson, pBT is the transverse momentum of the B meson
and LB

xy, is the displacement of the secondary vertex from the primary vertex within the
transverse plane.

41

4.2 Problem 4 SIMPLE ANALYSES

Hints

Start by reading over problem/generator/main.c and its associated Makefile.

The HEPEVT event record is defined in include/hepevt.h.

/∗ Maximum number o f p a r t i c l e s ∗/
#define NMXHEP 4000

typedef struct {
int nevhep ; /∗ The event number ∗/
int nhep ; /∗ The number o f p a r t i c l e s in the event ∗/
int i s t h ep [NMXHEP] ; /∗ Pa r t i c l e s t a t u s code ∗/
int idhep [NMXHEP] ; /∗ Pa r t i c l e i d e n t i f i e r (PDG standard) ∗/
int jmohep [NMXHEP] [2] ; /∗ Mother index / i nd i c e s ranges ∗/
int jdahep [NMXHEP] [2] ; /∗ Daughter index / i nd i c e s ranges ∗/
double phep [NMXHEP] [5] ; /∗ Four vec t o r and mass ∗/
double vhep [NMXHEP] [4] ; /∗ Production v e r t e x ∗/

} HEPEVT;

Documentation of the HEPEVT member variables is given in include/hepevt.h. The
decay vertex of the B mesons can be obtained by using the first daughter particle’s
production vertex.

Use the function

void read hepevt (FILE ∗ f i l e p t r , HEPEVT ∗hepevt) ;

to read each HEPEVT event record. This function is pre-declared in
include/hepevt/hepevt io.h and implemented in lib/libhepevt.a. To link to
lib/libhepevt.a start from lab3/problem/generator/Makefile.

Use the histogram functions pre-declared in include/histo/histogram.h and imple-
mented in lib/libhisto.a. Add -lhisto to the link line to add this library to the link
step. The two histograms can be created by calling hist create twice.

h i s t c r e a t e (”B pt” , 50 , 0 . , 5 0 .) ;
h i s t c r e a t e (”B ctau ” , 50 , 0 . , 1 .) ;

42

References References

References

[1] GCC, the GNU Compiler Collection. http://gcc.gnu.org/.

[2] GNU Make. http://www.gnu.org/software/make/manual/make.html.

[3] Gnuplot. http://www.gnuplot.info/.

[4] Particle Data Group. http://pdg.lbl.gov/.

[5] PYTHIA. http://www.thep.lu.se/∼torbjorn/Pythia.html.

[6] Wikipedia definition of Comma-separated values.
http://en.wikipedia.org/wiki/Comma-separated values.

[7] Wikipedia definition of Flowcharts. http://en.wikipedia.org/wiki/Flow chart.

[8] Wikipedia definition of Pseudocode. http://en.wikipedia.org/wiki/Pseudocode.

43

