ATLAS first results Charged-particle multiplicities in pp interactions at Vs = 900 GeV

W. H. Bell Université de Genève

On behalf of the ATLAS Collaboration

Overview

- Introduction
 - Goals and distributions
- Event selection
 - Trigger
 - Vertex
- Corrections
- Results
- Systematics
- Conclusion

UNIVERSITÉ

Introduction

- Measure primary charged particle multiplicity distributions from inelastic events.
 - Kinematic range $|\eta| < 2.5 \& p_T > 500 MeV$
 - Require $n_{ch} \ge 1$ ($|\eta| < 2.5 \& p_T > 500 MeV$)
 - Removes model dependence from trigger and vertex corrections.
 - No removal of Single Diffractive component.
 - Define primary as mean life time $\tau > 0.3 \times 10^{-10}$ s
- Correct reconstructed-track distributions back to hadron level for all detector effects.
 - Measure trigger and vertex corrections from data.
- Results are compared with PYTHIA 6.4.21 tunes, PHOJET 1.12 + PYTHIA 6.4.21, and other measurements.

 $n_{\rm ch}$ – number of primary charged particles in an event.

For events with $n_{ch} \ge 1$ ($|\eta| < 2.5 \& p_T > 500 MeV$) $N_{ev} - Number of events.$ $N_{ch} - Total number of primary charged particles.$

Analysis Trigger: L1 MBTS

Minimum Bias Trigger Scintillators (MBTS)

Moriond QCD - 2010/03/14

- Require 1 or more counter from either side above threshold (L1_MBTS_1)
- 455593 events were selected using the L1 MBTS trigger.
 - Stable beams.

UNIVERSITÉ

DE GENÈVE

 Data quality selection requiring fully operational Inner Detector, trigger and solenoid B-field.

z = ±3560 mm, 8 units in φ, 2 units in η (2.09 < η < 2.82, 2.82< η < 3.84)

5

Control Trigger

 mbSpTrk - L1 Beam-pickup, filtered by L2 Pixel and Silicon microstrip (SCT) spacepoints, and EF track.

Moriond QCD - 2010/03/14

UNIVERSITÉ

Offline Selection

- Track selection for analysis (sel):
 - $p_{T} > 500 MeV$
 - $|\eta| < 2.5$
 - Number of Pixel Hits ≥ 1
 - − Number of SCT Hits \ge 6
 - $|d_0^{PV}| < 1.5 \text{ mm}$
 - $|z_0^{PV} \sin(\theta^{PV})| < 1.5 \text{ mm}$
 - Inside out track reconstruction
- Event selection:

UNIVERSITÉ

- L1 MBTS trigger (L1_MBTS_1)
- Primary vertex without beam-spot constraint and including three or more tracks ($p_T > 150$ MeV).
- − Number of selected tracks $(n_{Sel}) \ge 1$
- 326201 events and 7904122 tracks pass this selection.

L1 MBTS Trigger Efficiency

Measured from data using control trigger. No effect on p_{T} and η spectrum within statistical uncertainties.

 $\varepsilon (L1_MBTS_1) = \frac{L1_MBTS_1 \& offline \& mbSpTrk}{offline \& mbSpTrk}$

- Efficiency is close to 1 for offline selection.
- Track selection without primary vertex, but with impact parameter wrt beam spot (BS)
 - Selected tracks, but dropping
 - $|d_0^{PV}| < 1.5$ mm
 - $|z_0^{PV} \sin(\theta^{PV})| < 1.5 \text{mm}$
 - Require $|d_0^{BS}| < 4$ mm

Beam Background

Measure time difference from offline readout of MBTS (Time cut is not used in analysis selection.)

Vertex Efficiency

No effect on p_T spectrum within statistical uncertainties. Shaping of η for $n_{Sel} = 1$ corrected for.

UNIVERSITÉ DE GENÈVE

-0.5

0

-1.5

0.5

1.5

2

6.5

-2

Moriond QCD - 2010/03/14

2.5

η

Particles from Secondary Interactions

- Sources of secondary interactions:
 - Nuclear interactions
 - Weakly decaying particles (K_s, Lambda etc.)
 - Pion decays

Compare Monte Carlo and data.

Fit Monte Carlo to data within 2.0 mm < $|d_0^{PV}| < 10 \text{ mm}$

Determine fraction of tracks inside $|d_0^{PV}| < 1.5 \text{ mm}$ $|z_0^{PV} \sin(\theta^{PV})| < 1.5 \text{ mm}$ to be 2.20 ± 0.05 (stat.) ± 0.11 (sys.) %

Correction Procedure

• Correct for the effect of the trigger and primary vertex reconstruction efficiency on an event-by-event basis:

$$w_{\rm ev}(n_{\rm Sel}^{\rm BS}) = \frac{1}{\epsilon_{\rm trig}(n_{\rm Sel}^{\rm BS})} \cdot \frac{1}{\epsilon_{\rm vtx}(n_{\rm Sel}^{\rm BS})}$$

 Correct for track-reconstruction efficiency (P_T, η) on a trackby-track basis:

$$w_{\rm trk}(p_{\rm T},\eta) = \frac{1}{\epsilon_{\rm bin}(p_{\rm T},\eta)} \cdot (1 - f_{\rm sec}(p_{\rm T})) \cdot (1 - f_{\rm okr}(p_{\rm T},\eta))$$

- Correct n_{sel} to n_{ch} using M_{ch,sel}
 - Filled from MC, applied, refilled, converges after 4 iterations.
- Correct for events with n_{sel} = 0 and n_{ch} > 0 using:

$$\frac{1}{(1-(1-\epsilon(n_{\rm ch}))^{n_{\rm ch}})}{}^{n_{\rm ch}})$$

Mean track reconstruction efficiency

Moriond QCD - 2010/03/14

effect

Table of Systematic Uncertainties

Systematic uncertainty on the number of events, $N_{\rm ev}$	
Trigger efficiency	< 0.1%
Vertex-reconstruction efficiency	< 0.1%
Track-reconstruction efficiency	1.1%
Different MC tunes	0.4%
Total uncertainty on $N_{\rm ev}$	1.2%
Systematic uncertainty on $(1/N_{\rm ev}){\cdot}({\rm d}N_{\rm ch}/{\rm d}\eta)$ at $\eta=0$	
Track-reconstruction efficiency	4.0%
Trigger and vertex efficiency	< 0.1%
Secondary fraction	0.1%
Total uncertainty on $N_{\rm ev}$	-1.2%
Total uncertainty on $(1/N_{-})(dN_{+}/dn)$ at $n=0$	2.8%

 N_{ev} defined for $n_{ch} \ge 1$, N_{ev} uncertainty therefore anti-correlated with track-reconstruction

Moriond QCD - 2010/03/14

UNIVERSITÉ DE GENÈVE

Comparison: $1/p_T dN_{ch}/dp_T$

- *p*_T spectrum similar to CMS NSD result.
 - Agree within uncertainties when ATLAS is converted to CMS NSD.
- Interpreted UA1 data are higher at low $p_{\rm T}$
 - Expect this is a measurement definition difference.

Conclusions

- Charged particle multiplicities were studied from 300k interactions of pp at Vs=900GeV within
 - $|\eta| < 2.5 \text{ and } p_T > 500 \text{MeV}$
 - $n_{ch} \ge 1$ ($|\eta| < 2.5$ and $p_T > 500 MeV$)
- Data were fully corrected with minimal dependence.
- The charged-particle multiplicity per event and unit of pseudorapidity at η=0 is measured to be 1.333±0.003(stat.)±0.040(syst.).

- 5-15% higher than Monte Carlo models.

• Selected kinematic range and precision highlight clear differences between MC models and data.

