# From charged-particle multiplicities to the top quark



W. H. Bell

#### Université de Genève



# Overview

- Introduction
- Charged-particle multiplicities
- Inclusive W cross-section
- W + jets cross-section
- Top cross-section
- Conclusions
- Analyses for 2011





### Objectives

- The LHC is a discovery machine
- Study standard model properties
- Search for the Higgs boson.
- Look for sources of new physics.



### **Proton-proton collision**





UNIVERSITÉ

**DE GENÈVE** 

### The ATLAS detector

44m





# Charged-particle multiplicity distributions

- Basic underlying physics of *pp* interactions.
- MC attempt to describe low-p<sub>T</sub> processes using 2 to-2 scatters and phenomenological models.
  - Multiple-parton scattering
  - Partonic matter distributions
  - Scattering between unresolved protons
  - Colour reconnection.
- Phenomenological models tuned using measurements.
  - Measurements needed to constrain behaviour at different centre-of-mass energies.



# Making a measurement

- Select inelastic *pp* interactions using minimal bias.
  - Trigger scintillators with a large coverage overlapping with track-reconstruction volume.
  - The tracking detector itself.
  - Beam bunch requirement.
- Reconstruct charged particles using silicon or gas tracking detectors.
  - Magnetic field surrounding tracking volume needed for momentum measurements.
- Reconstruct the primary vertex or use the beam position to select primary tracks.
- Correct for event and track selection and provide a particle level result.



## **Experimental** issues

- Additional *pp* interactions.
- Multiple scattering within tracking detector.
- Nuclear interactions, which result in badly measured tracks.
- $p_{T}$  resolution as  $p_{T}$  becomes large.



# Types of measurement

- No corrections
  - Easy to produce this result, hard for someone else outside the experiment to understand.
- Non-single-diffractive
  - Removal of single-diffractive events within acceptance.
  - Addition of double-diffractive and non-diffractive events with  $n_{ch} = 0$  using MC generator.
- Fully corrected within kinematic range.
  - Data used for trigger and vertex corrections.
  - Only events with  $n_{ch} \ge 1$  included in distributions.



## **Correction factors**

- Trigger selection is sensitive to physics processes.
  - Trigger correction with MC model folds in physics assumptions from MC into data distribution.
- Extrapolation back to  $p_T = 0$ .
  - Fold in model based assumptions about distribution.
- Correction of tracking acceptance using MC.
  - Folds in  $n_{\rm ch}$  distribution from MC for low multiplicity bins.
- Need to avoid sources of model dependence and present results within acceptance.



# $n_{\rm ch}$ =0 and diffraction



Adding in  $n_{ch}$ =0 events effects normalisation of distribution.

Removing single diffractive diffractive component implies  $p_T$ spectrum of generator removed from measured distribution.

Corrections typically made using PYTHIA 6.4.21 i.e. poor diffractive model.

These corrections are not made on the ATLAS data and this Figure is used for illustrative purposes only.



### Distributions



N<sub>ev</sub> (1) Events with  $n_{ch} \ge 1$  (| $\eta$ |<2.5 &  $p_T$  > 500MeV) (2) Events with  $n_{ch} \ge 2$  (| $\eta$ |<2.5 &  $p_T$  > 100MeV)

Discussion will follow (2) and  $\sqrt{s} = 7$ TeV measurements



### Charged-particle multiplicities: summary

- Measure charged particle multiplicity distributions from inelastic events within  $|\eta| < 2.5 \& p_T > 100 \text{MeV}$ 
  - Require  $n_{ch} \ge 2$  ( $|\eta| < 2.5 \& p_T > 100 MeV$ )
    - Removes model dependence from trigger and vertex corrections.
  - No removal of single-diffractive-component.
  - No removal of Dalitz decays.
  - No extrapolation to  $p_T = 0$  or correction for acceptance using models.
- Correct reconstructed-track distributions back to particle level for all detector effects.
  - Measure trigger and vertex corrections from data.



 $dN_{ch}/d\eta$ 

### $1/(2\pi p_T) d^2 N_{ch}/d\eta dp_T$





DPNC Genève - 2011/03/09

14

 $dN_{ev}/dn_{ch}$ 

 $< p_T > vs n_{ch}$ 





DPNC Genève - 2011/03/09

15

# $dN_{ch}/d\eta$ at $\eta = 0$ vs $\sqrt{s}$





# W production

- The W (and Z) boson production expected from the Standard Model is an important background for top quark production and for searches beyond the standard model.
- W (and Z) bosons provide a source of high  $p_{\rm T}$  isolated leptons.
  - Used to understand detector and trigger performance, lepton identification and MET resolution.
- Inclusive and associated jets analyses have been carried out.



# **Electron identification**

- Electrons are selected with three levels of selection, each tighter than the first.
- The definition of these selection criteria depends on ongoing optimisation.
- Typically:
  - The loosest selection is based on transverse and longitudinal shower shape in the second layer of the calorimeter, with a requirement on the hadronic leakage.
  - A slightly more robust selection is given by using shower shape measurements in the first layer of the calorimeter and track quality and impact parameter
  - The most robust requirement uses cluster-track energy vs momentum, transition radiation in the TRT, at least one pixel blayer hit.



# Muon identification

- Stand-alone muon-spectrometer track associated to an inner-detector track.
  - association found from best  $\chi^2$
  - combine tracks or refit.
  - W+jets and Top analysis use additional track quality, matching and impact parameter requirements.
    - Further reduce QCD background.



# QCD background

- All other source of background not included in another term.
  - Jets which deposit a lot of energy in the electromagnetic calorimeter
  - Conversions in material before first pixel layer.
  - Muons produced from long lived weakly decaying particles.
- Tightly coupled to the detector description and the result of fluctuations.
  - Create templates from adjacent control regions, where signal is  $\approx 0$ .
  - Use looser selection and calculate:

$$N_{\text{loose}} = N_{\text{nonQCD}} + N_{\text{QCD}}$$
$$N_{\text{iso}} = \varepsilon_{\text{nonQCD}}^{\text{iso}} N_{\text{nonQCD}} + \varepsilon_{\text{QCD}}^{\text{iso}} N_{\text{QCD}}$$

solving for  $N_{\text{QCD}}$  given the two efficiency factors.



### W inclusive: event selection

- Presence of a primary vertex
- Electron ET > 20 GeV or combined muon  $p_{T}$  > 20 GeV
- Muon isolation  $\Sigma p_T^{ID}/p_T < 0.2$  within  $\Delta R < 0.2$

$$\Delta R = \sqrt{\Delta \phi^2 + \Delta \eta^2}$$

- ETmiss > 25GeV
- $m_{T}$  > 40GeV, where the transverse mass is:

$$m_{\rm T} = \sqrt{2 \ p_{\rm T}^{\ell} \ E_{\rm T}^{\rm miss} \ (1 - \cos \Delta \phi)}$$

and  $\Delta\phi$  is the azimuthal separation between ETmiss and the lepton.



# W inclusive: fiducial limits

- $W \rightarrow ev$ 
  - ETe > 20 GeV
  - $|\eta_{\rm e}|$  < 2.47, excluding 1.37 <  $|\eta_{\rm e}|$  < 1.52
  - $p_{T}^{v} > 25 \text{ GeV}$
  - $-m_{T} > 40 \text{ GeV}$
- $W \rightarrow \mu \nu$ 
  - $-p_{T}^{\mu} > 20 \text{ GeV}$
  - $|\eta_{\mu}| < 2.4$
  - $p_{T}^{v} > 25 \text{ GeV}$
  - $m_{T} > 40 \text{ GeV}$



# $W \rightarrow \mu v_{\mu}$ inclusive: $p_{T} \& m_{T}$

Muon candidate events and backgrounds before ETmiss requirement





# $W \rightarrow \mu v_{\mu}$ inclusive: $m_{T} \& p_{T}$





# $W \rightarrow \mu v_{\mu}$ inclusive: candidates and backgrounds

| l           | Observed   | Background             | Background                     | Background-subtracted      |
|-------------|------------|------------------------|--------------------------------|----------------------------|
|             | candidates | $(EW+t\bar{t})$        | (QCD)                          | signal $N_W^{sig}$         |
| <i>e</i> +  | 637        | $18.8\pm0.2\pm1.7$     | $14.0\pm2.1\pm7.1$             | $604.2 \pm 25.2 \pm 7.6$   |
| <i>e</i> -  | 432        | $14.7\pm0.2\pm1.3$     | $14.0\pm2.1\pm7.1$             | $403.2 \pm 20.8 \pm 7.5$   |
| $e^{\pm}$   | 1069       | $33.5\pm0.2\pm3.0$     | $28.0\pm3.0\pm10.0$            | $1007.5 \pm 32.7 \pm 10.8$ |
| $\mu^+$     | 710        | $42.5 \pm 0.2 \pm 2.9$ | $12.0\pm3.0\pm4.6$             | $655.6 \pm 26.6 \pm 6.2$   |
| $\mu^{-}$   | 471        | $35.1 \pm 0.2 \pm 2.4$ | $10.9 \pm 2.4 \pm 4.1$         | $425.0 \pm 21.7 \pm 5.4$   |
| $\mu^{\pm}$ | 1181       | $77.6 \pm 0.3 \pm 5.4$ | $22.8 \!\pm\! 4.6 \!\pm\! 8.7$ | $1080.6 \pm 34.4 \pm 11.2$ |

Electroweak backgrounds ( $W \rightarrow \tau v, Z \rightarrow II, Z \rightarrow \tau \tau$ )

The background-subtracted signal events are used to calculate fiducial cross sections.



### $\sigma_W \times BR(W \rightarrow V)$ for W+, W-



MC derived acceptance factors are used to convert the fiducial cross-section results into cross sections for the full phase space.

The W+/W- production asymmetry is expected from the u and d quark distributions in the proton.



### W production asymmetry



Used to constrain parton distribution functions.

Expected from u and d valence quark distributions in the proton.



Uncertainty bounds correspond to 90% CL on PDF sets.





Experimental and theoretical uncertainties partially cancel to provide a more powerful test of the standard model.



### W+jets production cross-section

- Test QCD as a function of the number of jets and the leading jet p<sub>T</sub>.
- Important background for ttbar, Higgs and BSM physics.
- Very similar selection to the inclusive W analysis.
  - Some additional requirements were made in the muon identification to reduce the QCD background.



### W+jets: associated jet multiplicities





# W+jets: fiducial limits

- In a similar manner to the inclusive W measurements the cross-section is quoted within a fiducial limit corresponding to the detector acceptance and event selection at the particlelevel.
  - $ET_j > 20 \text{ GeV}, |\eta_j| < 2.8,$
  - $ET_{I} > 20 GeV$
  - $|\eta_e| < 2.47$  (excluding 1.37 <  $|\eta_e| < 1.52$ )
  - $|\eta_{\mu}| < 2.4$
  - $p_{T}^{v} > 25 \text{GeV}, m_{T} > 40 \text{GeV}, \Delta R_{Ij} > 0.5$

# W+jets: inclusive jet multiplicity

Measurements at the particle-level, within the selected fiducial volume.



UNIVERSITÉ DE GENÈVE

#### Measurements at the particle-level, within the selected fiducial volume.







# The top quark

- The heaviest fundamental particle observed.
  - Expect large coupling to the mediator of electroweak symmetry breaking.
  - Possible new physics may couple to the top quark.
    - Therefore, seek to test Standard Model predictions of properties and production.



### b-tagging

50% working point 100<sup>×10³</sup> Arbitrary Units ATLAS Preliminary b-jets 80 c-jets light-flavour jets 60 40 20 20 20 30 -10 0 10  $L/\sigma(L)$ 

The signed decay length significance  $L/\sigma(L)$  for the SV0 *b*-tagging algorithm for simulated QCD jets

- Tracks associated with a jet are used to determine the decay length of the particle which fragmented into a jet.
  - Tracks are chosen that fulfill minimal quality requirements.
  - A secondary vertex fit is formed iteratively removing tracks with large  $\chi^2$ contributions until the  $\chi^2$  of the fit is below a selected threshold.
  - Two track vertices which originate from a material layer are discarded.



# Top (I+jets): event selection

- Similar lepton identification to the W+jets analysis.
- Exclusively one lepton with  $p_{T} > 20 \text{GeV}$
- ETmiss > 20 GeV
- ETmiss +  $m_{\rm T}$  > 60 GeV
- Jet *p*<sub>T</sub> > 25 GeV

INIVERSITÉ

DF GENEVE

• One or more b-tagged jet. ("tagged")



## Jet multiplicity distributions

For jets with  $p_{\rm T}$  > 25 GeV &  $|\eta|$  < 2.5



Hatched area represents total uncertainty on background.



# M<sub>jjj</sub> invariant mass

Hardest three jets are combined without b-tagging weight. The combination is ~25% correct. There is good agreement between predicted and observed ttbar shapes.



Hatched area represents total uncertainty on background.



# Forming a final result

- The number of events in the inclusive 4 jet bin after background subtraction was used together with acceptance factors derived from MC and the branching ratios
- The result of the I+jets analysis was combined with the di-lepton analysis to form a final result.



### First ttbar cross-section comparison





# Conclusions

- Charged-particle multiplicity studies have lead to better MC tunes.
  - Diffractive models could still be improved.
- Inclusive W and W with associated jet production cross-sections have been measured.
  - Perturbative QCD calculations agree with these measurements.
- An initial ttbar cross-section measurement has been made.
  - CMS and ATLAS results are in agreement.
  - NNLO QCD measurements agree with these measurements.



# Analyses for 2011/12

- Production cross-section of ttbar + jets
  - Experimental measurements of 0 and 1 jet at the Tevatron.
  - Theoretical calculations are difficult.
    - Large number of diagrams and the presence of massive particles.
  - Background to Higgs boson production in vector boson fusion, BSM processes involving lepton + jets.
- t' Heavy top like 4<sup>th</sup> generation searches.
- ttbar production asymmetry
  - 2σ excess observed at the Tevatron.
- Vector boson scattering (W+jets, Z+jets)
  - Discriminate between Higgs and dynamic symmetry breaking models.



### ttbar, associated jets and asymmetry





Events

## **References for further reading**

arXiv:1012.5104 Charged-particle multiplicities arXiv:1010.2130 Inclusive W cross-section arXiv:1012.5382 W+jets cross-section arXiv:1012.1792 Top cross-section



### Additional slides



## **Charged-particle multiplicities**

| Systematic Uncertainty               | Size        | Region                                                            |  |
|--------------------------------------|-------------|-------------------------------------------------------------------|--|
| Material                             | ±2-15%      | decreases with $p_{\rm T}$ , increases with $ \eta $              |  |
| $\chi^2$ prob. cut                   | ±10%        | flat, only for $p_{\rm T} > 10 {\rm GeV}$                         |  |
|                                      | ±5%         | $100 < p_{\rm T} < 150 {\rm ~MeV}$                                |  |
| Resolution                           | negligible  | $0.15 < p_{\rm T} < 10  {\rm GeV}$                                |  |
|                                      | -7%         | $p_{\rm T} > 10  {\rm GeV}$                                       |  |
| Track Selection                      | ±1%         | flat in $p_{\rm T}$ and $\eta$                                    |  |
| Truth Matching                       | ±1%         | only for $\sqrt{s} = 2.36$ TeV Pixel Tracks                       |  |
| Efficiency correction factor         | ±4%         | only for $\sqrt{s} = 2.36$ TeV ID Track                           |  |
| Alignment and other high n-          | -3% to -30% | only for $p_{\rm T} > 10 {\rm ~GeV}$                              |  |
| Augminent and other high $p_{\rm T}$ |             | averaged over $\eta$ , increases with increasing $p_{\mathrm{T}}$ |  |

Table 5: The systematic uncertainties on the track reconstruction efficiency for  $\sqrt{s} = 0.9$  TeV,  $\sqrt{s} = 7$  TeV and  $\sqrt{s} = 2.36$  TeV Pixel Track and ID Track methods. Unless otherwise stated, the systematic is similar for all energies and phase-space regions. All uncertainties are quoted relative to the track reconstruction efficiency.



### LAr calorimeter module





 $\sigma_{W} \times BR(W \rightarrow V)$  for W+, W- $\sigma_{w^+}^{\text{tot}} \cdot \text{BR}(W \to \ell \nu) = 5.93 \pm 0.17 \text{ (stat)} \pm 0.30 \text{ (syst)} \pm 0.65 \text{ (lumi) nb},$  $\sigma_{W^-}^{\text{tot}} \cdot \text{BR}(W \to \ell \nu) = 4.00 \pm 0.15 \text{ (stat)} \pm 0.20 \text{ (syst)} \pm 0.44 \text{ (lumi) nb},$  $\sigma_{w}^{\text{tot}} \cdot BR(W \rightarrow \ell v) = 9.96 \pm 0.23(\text{stat}) \pm 0.50(\text{syst}) \pm 1.10(\text{lumi}) \text{ nb.}$ 





UNIVERSITÉ DE GENÈVE

### W+jets systematic uncertainties

| e channel                                   |                                                                         |                 |  |
|---------------------------------------------|-------------------------------------------------------------------------|-----------------|--|
|                                             |                                                                         | Cross Section   |  |
| Effect                                      | Range                                                                   | Uncertainty (%) |  |
| Jet energy scale and $E_{\rm T}^{\rm miss}$ | $\pm 10\%$ (dependent on jet $\eta$ and $p_{\mathrm{T}}$ ) $\oplus 5\%$ | +11, -9         |  |
| Jet energy resolution                       | 14% on each jet                                                         | $\pm 1.0$       |  |
| Electron trigger                            | $\pm 0.5\%$                                                             | $\mp 0.7$       |  |
| Electron identification                     | $\pm 5.2\%$                                                             | $\mp 5.5$       |  |
| Electron energy scale                       | $\pm 3\%$                                                               | +3.9, -4.7      |  |
| Pile–up removal cut                         | $4-7\%$ in lowest jet $p_{\rm T}$ bin                                   | $\pm 1.9$       |  |
| Residual pile-up effects                    | from simulation                                                         | $\pm 2.2$       |  |
| QCD background shape                        | from template variation                                                 | -1.5, +5.2      |  |
| Luminosity                                  | $\pm 11\%$                                                              | -10, +13        |  |

|       |         | _ |
|-------|---------|---|
|       | 1 1     |   |
|       | channal |   |
| $\mu$ | channer |   |

|                                             |                                                                   | Cross Section   |
|---------------------------------------------|-------------------------------------------------------------------|-----------------|
| Effect                                      | Range                                                             | Uncertainty (%) |
| Jet energy scale and $E_{\rm T}^{\rm miss}$ | $\pm 10\%$ (dependent on jet $\eta$ and $p_{ m T}$ ) $\oplus 5\%$ | +11, -9         |
| Jet energy resolution                       | 14% on each jet                                                   | $\pm 1.8$       |
| Muon trigger                                | $\pm 2.5\%$ in barrel, $\pm 2.0\%$ in endcap                      | $\mp 1.6$       |
| Muon reconstruction                         | $\pm 5.6\%$                                                       | -5.4, +5.9      |
| Muon momentum scale                         | $\pm 1\%$                                                         | +2, -0.9        |
| Muon momentum resolution                    | $\pm 5\%$ in barrel, $\pm 9\%$ in endcap                          | $\pm 1.4$       |
| Pile–up removal cut                         | $4-7\%$ in lowest jet $p_{\rm T}$ bin                             | $\pm 1.7$       |
| Residual pile-up effects                    | from simulation                                                   | $\pm 1.4$       |
| Luminosity                                  | $\pm 11\%$                                                        | -11, +13        |

Table 3: Summary of the systematic uncertainties in the cross section. The uncertainties are shown only for  $N_{jet} \ge 1$ . The sign convention for the JES and lepton energy scale uncertainties is such that a positive change in the energy scale results in an increase in the jet or lepton energy observed in the data.



UNIVERSITÉ

DE GENÈVE





### ttbar cross-section: uncertainties

|                                                | Relative cross-section uncertainty [%] |             |
|------------------------------------------------|----------------------------------------|-------------|
| Source                                         | e+jets                                 | $\mu$ +jets |
| Statistical uncertainty                        | ±43                                    | ±29         |
| Object selection                               |                                        |             |
| Lepton reconstruction, identification, trigger | ±3                                     | ±2          |
| Jet energy reconstruction                      | ±13                                    | ±11         |
| b-tagging                                      | -10/+15                                | -10/+14     |
| Background rates                               |                                        |             |
| QCD normalisation                              | ±30                                    | ±2          |
| W+jets normalisation                           | ±11                                    | ±11         |
| Other backgrounds normalisation                | ±1                                     | ±1          |
| Signal simulation                              |                                        |             |
| Initial/final state radiation                  | -6/+13                                 | ±8          |
| Parton distribution functions                  | ±2                                     | ±2          |
| Parton shower and hadronisation                | ±1                                     | ±3          |
| Next-to-leading-order generator                | ±4                                     | ±6          |
| Integrated luminosity                          | -11/+14                                | -10/+13     |
| Total systematic uncertainty                   | -38/+43                                | -23 / +27   |
| Statistical + systematic uncertainty           | -58/+61                                | -37 / +40   |

